46 research outputs found

    Cortical response variability is driven by local excitability changes with somatotopic organization

    Get PDF
    Identical sensory stimuli can lead to different neural responses depending on the instantaneous brain state. Specifically, neural excitability in sensory areas may shape the brainÂŽs response already from earliest cortical processing onwards. However, whether these dynamics affect a given sensory domain as a whole or occur on a spatially local level is largely unknown. We studied this in the somatosensory domain of 38 human participants with EEG, presenting stimuli to the median and tibial nerves alternatingly, and testing the co-variation of initial cortical responses in hand and foot areas, as well as their relation to pre-stimulus oscillatory states. We found that amplitude fluctuations of initial cortical responses to hand and foot stimulation - the N20 and P40 components of the somatosensory evoked potential (SEP), respectively - were not related, indicating local excitability changes in primary sensory regions. In addition, effects of pre-stimulus alpha (8-13 Hz) and beta (18-23 Hz) band amplitude on hand-related responses showed a robust somatotopic organization, thus further strengthening the notion of local excitability fluctuations. However, for foot-related responses, the spatial specificity of pre-stimulus effects was less consistent across frequency bands, with beta appearing to be more foot-specific than alpha. Connectivity analyses in source space suggested this to be due to a somatosensory alpha rhythm that is primarily driven by activity in hand regions while beta frequencies may operate in a more hand-region-independent manner. Altogether, our findings suggest spatially distinct excitability dynamics within the primary somatosensory cortex, yet with the caveat that frequency-specific processes in one sub-region may not readily generalize to other sub-regions

    Cortical response variability is driven by local excitability changes with somatotopic organization

    Get PDF
    Identical sensory stimuli can lead to different neural responses depending on the instantaneous brain state. Specifically, neural excitability in sensory areas may shape the brain’s response already from earliest cortical processing onwards. However, whether these dynamics affect a given sensory domain globally or occur on a spatially local level is largely unknown. We studied this in the somatosensory domain of 38 human participants with EEG, presenting stimuli to the median and tibial nerves alternatingly, and testing the co-variation of initial cortical responses in hand and foot areas, as well as their relation to pre-stimulus oscillatory states. We found that amplitude fluctuations of initial cortical responses to hand and foot stimulation – the N20 and P40 components of the somatosensory evoked potential (SEP), respectively – were not related, indicating local excitability changes in primary sensory regions. In addition, effects of pre-stimulus alpha (8-13 Hz) and beta (18-23 Hz) band amplitude on hand-related responses showed a robust somatotopic organization, thus further strengthening the notion of local excitability fluctuations. However, for foot-related responses, the spatial specificity of pre-stimulus effects was less consistent across frequency bands, with beta appearing to be more foot-specific than alpha. Connectivity analyses in source space suggested this to be due to a somatosensory alpha rhythm that is primarily driven by activity in hand regions while beta frequencies may operate in a more hand-region-independent manner. Altogether, our findings suggest spatially distinct excitability dynamics within the primary somatosensory cortex, yet with the caveat that frequency-specific processes in one sub-region may not readily generalize to other sub-regions

    Agency and responsibility over virtual movements controlled through different paradigms of brain−computer interface

    Get PDF
    Agency is the attribution of an action to the self and is a prerequisite for experiencing responsibility over its consequences. Here we investigated agency and responsibility by studying the control of movements of an embodied avatar, via brain computer interface (BCI) technology, in immersive virtual reality. After induction of virtual body ownership by visuomotor correlations, healthy participants performed a motor task with their virtual body. We compared the passive observation of the subject's ‘own’ virtual arm performing the task with (1) the control of the movement through activation of sensorimotor areas (motor imagery) and (2) the control of the movement through activation of visual areas (steady‐state visually evoked potentials). The latter two conditions were carried out using a brain–computer interface (BCI) and both shared the intention and the resulting action. We found that BCI‐control of movements engenders the sense of agency, which is strongest for sensorimotor areas activation. Furthermore, increased activity of sensorimotor areas, as measured using EEG, correlates with levels of agency and responsibility. We discuss the implications of these results for the neural basis of agency

    Manipulating the perceived shape and color of a virtual limb can modulate pain responses

    No full text
    Changes in body representation may affect pain perception. The effect of a distorted body image, such as the telescoping effect in amputee patients, on pain perception, is unclear. This study aimed to investigate whether distorting an embodied virtual arm in virtual reality (simulating the telescoping effect in amputees) modulated pain perception and anticipatory responses to pain in healthy participants. Twenty-seven right-handed participants were immersed in virtual reality and the virtual arm was shown with three different levels of distortion with a virtual threatening stimulus either approaching or contacting the virtual hand. We evaluated pain/discomfort ratings, ownership, and skin conductance responses (SCRs) after each condition. Viewing a distorted virtual arm enhances the SCR to a threatening event with respect to viewing a normal control arm, but when viewing a reddened-distorted virtual arm, SCR was comparatively reduced in response to the threat. There was a positive relationship between the level of ownership over the distorted and reddened-distorted virtual arms with the level of pain/discomfort, but not in the normal control arm. Contact with the threatening stimulus significantly enhances SCR and pain/discomfort, while reduced SCR and pain/discomfort were seen in the simulated-contact condition. These results provide further evidence of a bi-directional link between body image and pain perception

    Non-invasive multi-channel electrophysiology of the human spinal cord: Assessing somatosensory processing from periphery to cortex

    Get PDF
    The spinal cord is of fundamental importance for somatosensory processing and plays a significant role in various pathologies, such as chronic pain. However, knowledge on spinal cord processing in humans is limited due to the vast technical challenges involved in its investigation via non-invasive recording approaches. Here, we aim to address these challenges by developing an electrophysiological approach – based on a high-density electrode-montage – that allows for characterizing spinal cord somatosensory evoked potentials (SEPs) and combining this with concurrent recordings of the spinal cord’s input (peripheral nerve action potentials) and output (SEPs in brainstem and cortex). In two separate experiments, we first methodologically validate the approach (including replication and robustness analyses) and then assess its application in the context of a neuroscientific question (integrative processes along the neural hierarchy). Critically, we demonstrate the benefits of multi-channel recordings in terms of enhancing sensitivity via spatial filtering, which also allows for obtaining spinal cord SEPs at the single-trial level. We make use of this approach to demonstrate the feasibility of recording spinal cord SEPs in low-signal scenarios (single-digit stimulation) and – most importantly – to provide evidence for bottom-up signal integration already at the level of the spinal cord. Taken together, our approach of concurrent multi-channel recordings of evoked responses along the neural hierarchy allows for a comprehensive assessment of the functional architecture of somatosensory processing at a millisecond timescale

    Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity

    Get PDF
    Evidence suggests that the sense of the position of our body parts can be surreptitiously deceived, for instance through illusory visual inputs. However, whether altered visual feedback during limb movement can induce substantial unconscious motor and muscular adjustments is not known. To address this question, we covertly manipulated virtual body movements in immersive virtual reality. Participants were instructed to flex their elbow to 90° while tensing an elastic band, as their virtual arm reproduced the same, a reduced (75°), or an amplified (105°) movement. We recorded muscle activity using electromyography, and assessed body ownership, agency and proprioception of the arm. Our results not only show that participants compensated for the avatar’s manipulated arm movement while being completely unaware of it, but also that it is possible to induce unconscious motor adaptations requiring significant changes in muscular activity. Altered visual feedback through body ownership illusions can influence motor performance in a process that bypasses awareness

    Multisensory processing and agency in VR embodiment: Interactions through BCI and their therapeutic applications

    Get PDF
    Body ownership refers to the experience that this body is my body and is closely linked to consciousness. Multisensory integration processes play an important role in body ownership as shown in the rubber hand illusion, which induces the illusory experience that a rubber hand is part of one's own body. Illusions of body ownership can also be experienced in immersive virtual reality (VR), which was used in all three experiments of this thesis. The first experiment of this thesis aimed at investigating some of the underlying mechanisms of body ownership. Specifically we were interested whether the body ownership illusion fluctuates over time and if so, whether these fluctuations are related to spontaneous brain activity. The second experiment aimed at investigating the relation between body ownership illusions and pain perception. Looking at one's own body has been demonstrated to have analgesic properties. This well-known effect in people's real hand has been studied in illusory owned hands with contradictory results. It has been replicated in VR-embodiment, but there are controversial findings in the rubber hand illusion. One crucial difference between the rubber hand illusion and VR-embodiment is that in VR real and virtual hand can be colocated while this is not possible in the rubber hand illusion. We were interested whether the distance between real and surrogate hand can explain controversial findings in the literature. When people experience high levels of body ownership over a virtual body, they can also feel agency over the actions of that virtual body. Agency has been described as result of a matching between predicted and actual sensory feedback of a planned motor action, a process involving motor areas. However, situations in which strong body ownership gives us the illusion of agency, raise the question of the involvement of motor areas in the sense of agency. In the third experiment of this thesis we explored this question in the context of brain computer interfaces (BCI). All together these experiments investigated underlying processes of body ownership and its influences on pain perception and agency. The findings have implications in pain management and neurological rehabilitatio

    Multilevel models

    No full text

    Chronic regional pain syndrome

    No full text
    corecore